International Journal Articles

  1. Kim, J., Obregon, J., Park, H., & Jung, J. Y. (2024). Multi-step photovoltaic power forecasting using transformer and recurrent neural networks. Renewable and Sustainable Energy Reviews, 200.
  2. Obregon, J., & Jung, J. Y. (2024). Rule-based visualization of faulty process conditions in the die-casting manufacturing. Journal of Intelligent Manufacturing, 35(2), 521–537.
  3. Obregon, J., Han, Y. R., Ho, C. W., Mouraliraman, D., Lee, C. W., & Jung, J. Y. (2023). Convolutional autoencoder-based SOH estimation of lithium-ion batteries using electrochemical impedance spectroscopy. Journal of Energy Storage, 60.
  4. Obregon, J., & Jung, J. Y. (2023). RuleCOSI+: Rule extraction for interpreting classification tree ensembles. Information Fusion, 89, 355–381.
  5. Obregon, J., Hong, J., & Jung, J.-Y. (2021). Rule-based explanations based on ensemble machine learning for detecting sink mark defects in the injection moulding process. Journal of Manufacturing Systems, 60, 392–405.
  6. Obregon, J., Kim, A., & Jung, J.-Y. (2019). RuleCOSI: Combination and simplification of production rules from boosted decision trees for imbalanced classification. Expert Systems with Applications, 126.
  7. Obregon, J., Song, M., & Jung, J. Y. (2019). InfoFlow: Mining Information Flow Based on User Community in Social Networking Services. IEEE Access, 7, 48024–48036.
  8. Kim, K., Obregon, J., & Jung, J.-Y. (2014). Analyzing information flow and context for Facebook fan pages. IEICE Transactions on Information and Systems, E97-D(4).

Conference Proceedings

  1. Kim, M., Han, Y.-S., Obregon, J., & Jung, J.-Y. (2024). Discovering Dispatching Rules in a Semiconductor Fab Using Interpretable Machine Learning. International Conference on Flexible Automation and Intelligent Manufacturing, 91–97. https://link.springer.com/chapter/10.1007/978-3-031-74482-2_11
  2. Smedt, J. D., Broucke, S. K. L. M. V., Obregon, J., Kim, A., Jung, J.-Y., & Vanthienen, J. (2017). Decision mining in a broader context: An overview of the current landscape and future directions. Business Process Management Workshops, 281.
  3. Kim, A., Obregon, J., & Jung, J.-Y. (2014). Constructing decision trees from process logs for performer recommendation. Business Process Management Workshops, 171 171 LN.
  4. Obregon, J., Kim, A., & Jung, J.-Y. (2013). DTminer: A tool for decision making based on historical process data. Asia Pacific Business Process Management, 159.

Book Chapters

  1. Obregon, J., & Jung, J. Y. (2022). Explanation of ensemble models. In Human-Centered Artificial Intelligence: Research and Applications (pp. 51–72). Academic Press.